(本小题满分12分)已知等比数列满足:,.(1)求数列的通项公式;(2)是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.
本题满分12分) 在直角坐标平面内,已知点,动点满足. (1)求动点的轨迹的方程; (2)过点作直线与轨迹交于两点,线段的中点为,轨迹的右端点为点N,求直线MN的斜率的取值范围.
如图已知,点P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,,,。 (1)求证:; (2)求直线PB与平面ABE所成的角; (3)求A点到平面PCD的距离。
已知数列{}的首项,通项(为常数),且成等差数列,求:(1)的值; (2)数列{}的前项的和的公式。
本题满分12分) 如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点. (1)求证:EF∥平面PAD; (2)求证:EF⊥CD;
在中,,. (1)求的值; (2)设,求的面积.