(本小题满分14分)如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.(1)证明:AD⊥平面PBC;(2)求三棱锥D-ABC的体积;
(本小题满分12分)学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”. (1)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率; (2)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.
(本小题满分12分)在如图所示的空间几何体中,平面平面ABC,是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上. (1)求证:DE//平面ABC; (2)求二面角的余弦值.
(本小题满分12分)已知函数的最大值为2,且最小正周期为. (1)求函数的解析式及其对称轴方程; (2)若的值.
(本小题满分14分)设函数, (1)证明:是上的增函数; (2)设,当时,恒成立,求的取值范围.
(本小题满分12分)已知椭圆:上任意一点到两焦点距离之和为,离心率为,动点在直线上,过作直线的垂线,设交椭圆于点. (1)求椭圆的标准方程; (2)证明:直线与直线的斜率之积是定值;