(本小题满分12分)如图,多面体ABCDEF中,正方形ADEF与梯形ABCD所在平面互相垂直,已知,,,,直线BE与平面ABCD所成的角的正切值等于(1)求证:平面BCE⊥平面BDE;(2)求平面BDF与平面CDE所成锐二面角的余弦值.
选修4-5:不等式选讲设函数,.(1)求不等式的解集; (2)设,且.求证:.
(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆C:,直线(t为参数).(Ⅰ)写出椭圆C的参数方程及直线的普通方程;(Ⅱ)设,若椭圆C上的点P满足到点A的距离与其到直线的距离相等,求点P的坐标.
如图,是△的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:;(Ⅱ)若,O到AC的距离为1,求⊙O的半径
(本小题满分12分)已知函数.(Ⅰ)当时,证明:当时,;(Ⅱ)当时,证明:.
(本小题满分12分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.(1)求椭圆的标准方程; (2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.