(本小题共13分)已知每项均是正整数的数列:,其中等于的项有个,设 ,. (Ⅰ)设数列,求; (Ⅱ)若数列满足,求函数的最小值.
在一个盒子中,放有标号分别为,,的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为、,记.(Ⅰ)求随机变量的最大值,并求事件“取得最大值”的概率;(Ⅱ)求随机变量的分布列和数学期望.
两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是,(Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?(Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?(Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次?
设关于x的一元二次方程x2+2ax+b2=0.(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
下表是某地区的一种传染病与饮用水的调查表:
利用列联表的独立性检验,判断能否以99.9%的把握认为“该地区的传染病与饮用不干净的水有关”参考数据:
设离散型随机变量X的分布列为
求:(Ⅰ)2X+1的分布列;(Ⅱ)|X-1|的分布列.