计算已知a=,b=,c=-,d=,e=,请你列式表示上述5个数中“无理数的和”与“有理数的积”的差,并计算结果。
解下列方程(每小题3分,共9分) (1) (2)(x+3)2=2x+5 (3)(2x+1)(x-3)=-4
如图,在平面直角坐标系中,矩形OABC的四个顶点坐标分别为O(0,0),A(4,0),B(4,3),C(0,3),G是对角线AC的中点,动直线MN平行于AC且交矩形OABC的一组邻边于E、F,交y轴、x轴于M、N.设点M的坐标为(0,t),△EFG的面积为S. (1)求S与t的函数关系式; (2)当△EFG为直角三角形时,求t的值; (3)当点G关于直线EF的对称点G′恰好落在矩形OABC的一条边所在直线上时,直接写出t的值.
如图1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D是BC上一定点.动点P从C出发,以2cm/s的速度沿C→A→B方向运动,动点Q从D出发,以1cm/s的速度沿D→B方向运动.点P出发5 s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当时△BPQ的面积S( cm2)与点P的运动时间t(s)的函数图象. (1)CD =, ; (2)当点P在边AB上时,t为何值时,使得△BPQ与△ABC为相似? (3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时t的值.
如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-2,0)、B(4,0)、C(0,2). (1)请用尺规作出△ABC的外接圆⊙P(保留作图痕迹,不写作法); (2)求出(1)中外接圆圆心P的坐标; (3)⊙P上是否存在一点Q,使得△QBC与△AOC相似?如果存在,请求出点Q 坐标;如果不存在,请说明理由
如图,有一长方形的仓库,一边长为5米.现要将它改建为简易住房,改建 后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积.若改建后卫生间的面积为6平方米,试求长方形仓库另一边的长.