选修4-4:极坐标与参数方程在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2交点的极坐标;(Ⅱ)求圆C1与C2的公共弦的参数方程.
设函数,的两个极值点为,线段的中点为. (1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心; (2) 如果点在第四象限,求实数的范围; (3) 证明:点也在函数的图象上,且为函数图象的对称中心.
设函数 (1)设,,证明:在区间内存在唯一的零点; (2)设为偶数,,,求的最小值和最大值; (3)设,若对任意,有,求的取值范围;
如图,在半径为、圆心角为的扇形金属材料中剪出一个长方形,并且与的平分线平行,设. (1)试写出用表示长方形的面积的函数; (2)在余下的边角料中在剪出两个圆(如图所示),试问当矩形的面积最大时,能否由这个矩形和两个圆组成一个有上下底面的圆柱?如果可能,求出此时圆柱的体积.
如图,单位圆(半径为的圆)的圆心为坐标原点,单位圆与轴的正半轴交于点,与钝角的终边交于点,设. (1)用表示; (2)如果,求点的坐标; (3)求的最小值.
已知二次函数且关于的方程在上有两个不相等的实数根.⑴求的解析式.⑵若总有成立,求的最大值.