如图,矩形所在的平面和平面互相垂直,等腰梯形中,∥,=2,,,,分别为,的中点,为底面的重心.(1)求证:平面平面;(2)求证: ∥平面;(3)求多面体的体积.
在 ΔABC 中,角A,B,C所对的边分别为a,b,c,且满足 cos A 2 = 2 5 5 , AB ⃗ ⋅ AC ⃗ = 3 .
(Ⅰ)求 △ ABC 的面积;
(Ⅱ)若 c = 1 ,求 a 的值.
双曲线 C 1 : x 2 4 2 - y 2 b 2 = 1 ,圆 C 2 : x 2 + y 2 = 4 + b 2 ( b > 0 ) 在第一象限交点为A, A ( x A , y A ) ,曲线 Γ x 2 4 - y 2 b 2 = 1 , x > x A x 2 + y 2 = 4 + b 2 , x > x A 。
(1)若 x A = 6 ,求b;
(2)若 b = 5 , C 2 与x轴交点记为 F 1 、 F 2 ,P是曲线 Γ 上一点,且在第一象限,并满足 P F 1 = 8 ,求∠ F 1 P F 2 ;
(3)过点 S ( 0 , 2 + b 2 2 ) 且斜率为 - b 2 的直线 l 交曲线 Γ 于M、N两点,用b的代数式表示 OM ⃗ ∙ ON ⃗ ,并求出 OM ⃗ ∙ ON ⃗ 的取值范围。
已知: ν = q x , x ∈ ( 0 , 80 ] ,且 ν = 100 -135 ( 1 3 ) 80 x , x ∈ ( 0 , 40 ) - k ( x - 40 ) + 85 , x ∈ [ 40 , 80 ] ( k > 0 ) ,
(1)若v>95,求x的取值范围;
(2)已知x=80时,v=50,求x为多少时,q可以取得最大值,并求出该最大值。
已知 f ( x ) =sin ωx ( ω > 0 ) .
(1)若f(x)的周期是4π,求 ω ,并求此时 f ( x ) = 1 2 的解集;
(2)已知 ω = 1 , g ( x ) = f 2 ( x ) + 3 f ( - x ) f ( π 2 - x ) , x ∈ 0 , π 4 ,求g(x)的值域.
已知边长为1的正方形ABCD,沿BC旋转一周得到圆柱体。
(1)求圆柱体的表面积;
(2)正方形ABCD绕BC逆时针旋转 π 2 到 A 1 BC D 1 ,求 A D 1 与平面ABCD所成的角。