首页 / 高中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 100

双曲线 C 1 : x 2 4 2 - y 2 b 2 = 1 ,圆 C 2 : x 2 + y 2 = 4 + b 2 ( b > 0 ) 在第一象限交点为A, A ( x A , y A ) ,曲线 Γ x 2 4 - y 2 b 2 = 1 , x > x A x 2 + y 2 = 4 + b 2 , x > x A

(1)若 x A = 6 ,求b;

(2)若 b = 5 C 2 与x轴交点记为 F 1 F 2 ,P是曲线 Γ 上一点,且在第一象限,并满足 P F 1 = 8 ,求∠ F 1 P F 2

(3)过点 S ( 0 , 2 + b 2 2 ) 且斜率为 - b 2 的直线 l 交曲线 Γ 于M、N两点,用b的代数式表示 OM ON ,并求出 OM ON 的取值范围。

登录免费查看答案和解析

双曲线C1:x242y2b21,圆C2:x2y24b2(b<