双曲线 C 1 : x 2 4 2 - y 2 b 2 = 1 ,圆 C 2 : x 2 + y 2 = 4 + b 2 ( b > 0 ) 在第一象限交点为A, A ( x A , y A ) ,曲线 Γ x 2 4 - y 2 b 2 = 1 , x > x A x 2 + y 2 = 4 + b 2 , x > x A 。
(1)若 x A = 6 ,求b;
(2)若 b = 5 , C 2 与x轴交点记为 F 1 、 F 2 ,P是曲线 Γ 上一点,且在第一象限,并满足 P F 1 = 8 ,求∠ F 1 P F 2 ;
(3)过点 S ( 0 , 2 + b 2 2 ) 且斜率为 - b 2 的直线 l 交曲线 Γ 于M、N两点,用b的代数式表示 OM ⃗ ∙ ON ⃗ ,并求出 OM ⃗ ∙ ON ⃗ 的取值范围。
已知函数,求函数的定义域,并判断它的奇偶性。
已知函数在有最大值5和最小值2,求a、b的值。
已知若试确定的单调区间和单调性.
集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}. (1)若B⊆A,求实数m的取值范围; (2)当x∈Z时,求A的非空真子集个数;
已知 求(1)和的值(2)的值,并求的解析式。