过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.(1)求椭圆的离心率;(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
在正方体ABCD—A1B1C1D1中,AP=B1Q,N是PQ的中点,M是正方形ABB1A1的中心.求证:(1)MN∥平面B1D1;(2)MN∥A1C1.
P是平行四边形ABCD外的一点,Q是PA的中点,求证:PC∥平面BDQ.
为 所在平面外一点,,,且,求证:面。
正方形交正方形于,、在对角线、上,且,求证:平面。
、异面,求证过与平行的平面有且仅有一个。