如图所示,已知ABCD为梯形,,且,M为线段PC上一点.(1)当时,证明:; (2)设平面,证明: (3)当平面MBD将四棱锥恰好分成两个体积体积相等的几何体时,试求的值.
如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点.(1)求证:;(2)若四点共圆,且弧与弧相等,求.
已知函数,,其中,是自然对数的底数.(1)当时,为曲线的切线,求的值;(2)若,,且函数在区间内有零点,求实数的取值范围.
在矩形中中,,为动点,的延长线与(或其延长线)分别交于点,若(1)若以线段所在的直线为轴,线段的中垂线为轴建立平面直角坐标系,试求动点的轨迹方程;(2)不过原点的直线与(1)中轨迹交于两点,若的中点在抛物线上,求直线的斜率的取值范围.
棱长为1的正方体中,分别为棱的中点.(1)若平面与平面的交线为,与底面的交点为点,试求的长;(2)求二面角的余弦值.
“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:其中)(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.