(本小题满分12分)(理科)已知圆(1)若圆的切线在轴和轴上截距相等,求切线的方程;(2)从圆外一点向圆引切线,为切点,为坐标原点,且,求的最小值以及此时点的坐标.
数列{an}中,an>0,an≠1,且(n∈N*). (1)证明:an≠an+1; (2)若,计算a2,a3,a4的值,并求出数列{an}的通项公式.
已知函数(,),. (1)求函数的单调区间,并确定其零点个数; (2)若在其定义域内单调递增,求的取值范围; (3)证明不等式 ().
已知二次函数+的图象通过原点,对称轴为,.是的导函数,且. (1)求的表达式(含有字母); (2)若数列满足,且,求数列的通项公式; (3)在(2)条件下,若,,是否存在自然数,使得当时恒成立?若存在,求出最小的;若不存在,说明理由.
已知椭圆过和点. (1)求椭圆的方程; (2)设过点的直线与椭圆交于两点,且,求直线的方程.
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点. (1)求证://平面; (2)求证:; (3)求三棱锥的体积.