在正方体ABCD-A1B1C1D1中,E是CD的中点,连接AE并延长与BC的延长线交于点F,连接BE并延长交AD的延长线于点G,连接FG.求证:直线FG⊂平面ABCD且直线FG∥直线A1B1.
已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足(O是坐标原点),若椭圆的离心率等于(1)求直线AB的方程;(2)若三角形ABF2的面积等于,求椭圆的方程.
已知,设命题p:对数函数在R+上单调递减,命题q:曲线与x轴交于不同的两点,如果“”为真,且“”为假,求的取值范围.
已知数列{an}满足a1=1,且an=2an-1+2n.(n≥2且n∈N*).(1)求数列{an}的通项公式;(2)设数列{an}的前n项之和Sn,求Sn.
△ABC中,内角为A,B,C,所对的三边分别是a,b,c,已知,.(1)求;(2)设·,求.
已知命题p:若,则x=2且y=﹣1.(1)写出p的否命题q,并判断q的真假(不必写出判断过程);(2)写出p的逆否命题r,并判断r的真假(不必写出判断过程).