某人上午7:00乘汽车以v1千米/小时(30≤v1≤100)匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以v2千米/小时(4≤v2≤20)匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地.设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费P=100+3(5﹣x)+2(8﹣y)元,那么v1,v2分别是多少时走的最经济,此时花费多少元?
某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
,,,,,,,,
,,,,,,
其中分别表示甲组研发成功和失败;分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平; (2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.,
已知数列 { a n } 的前 n 项和 S n = n 2 + n 2 , n ∈ N + . (1)求数列 { a n } 的通项公式; (2)设 b n = 2 a n + ( - 1 ) n a n ,求数列 { b n } 的前 2 n 项和.
在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为. (1)求轨迹为的方程 (2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.
为圆周率,为自然对数的底数. (1)求函数的单调区间; (2)求这6个数中的最大数与最小数; (3)将这6个数按从小到大的顺序排列,并证明你的结论.
如图,在正方体中,,,,,,分别是棱,,,,,的中点.求证: (1)直线∥平面; (2)直线⊥平面.