(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C:为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:=6.(1)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;(2)过点M(一1,0)且与直线l平行的直线l1交C于A, B两点,求点M到A,B两点的距离之积.
已知抛物线C的顶点在原点,焦点为F(2, 0)。 (1)求抛物线C的方程; (2)过的直线交曲线于两点,又的中垂线交轴于点, 求的取值范围。
已知抛物线:(),焦点为,直线交抛物线于、两点,是线段的中点,过作轴的垂线交抛物线于点, (1)若抛物线上有一点到焦点的距离为,求此时的值; (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出 的值;若不存在,说明理由。
已知四棱锥P—ABCD及其三视图如下图所示,E是侧棱PC上的动点。 (1)求四棱锥P—ABCD的体积; (2)不论点E在何位置,是否都有BDAE?试证明你的结论; (3)若点E为PC的中点,求二面角D—AE—B的大小。
如图,在四棱锥中,底面,,点E在线段AD上,且CE//AB。 (1)求证:CEPAD; (2)若,AD=3,CD=,,求四棱锥的体积。
已知为坐标原点,,(,是常数),若. (1)求关于的函数关系式; (2)若的最大值为,求的值; (3)利用(2)的结论,用“五点法”作出函数在长度为一个周期的闭区间上的简图,并指出函数的单调区间