(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C:为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:=6.(1)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;(2)过点M(一1,0)且与直线l平行的直线l1交C于A, B两点,求点M到A,B两点的距离之积.
已知函数.(1)求的值;(2)求的最大值及相应的值.
已知(m为常数,m>0且m≠1).设(n∈)是首项为m2,公比为m的等比数列.(1)求证:数列是等差数列; (2)若,且数列的前n项和为Sn,当m=2时,求Sn;(3)若,问是否存在m,使得数列中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.
已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线的距离为3。(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围.
已知函数(1)若的图象在点处的切线方程为,求在区间上的最大值;(2)当时,若在区间上不单调,求的取值范围.
如图,在三棱锥中,平面,,为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.(1)证明:平面;(2)求三棱锥的体积;(3)在的平分线上确定一点,使得平面,并求此时的长.