(本小题满分10分)已知数列是等差数列,且。(1)求的通项公式(2)若,求数列的前项和。
在三棱锥 A- BCD中,已知 CB= CD= 5 , BD=2, O为 BD的中点, AO⊥平面 BCD, AO=2, E为 AC的中点.
(1)求直线 AB与 DE所成角的余弦值;
(2)若点 F在 BC上,满足 BF= 1 4 BC,设二面角 F- DE- C的大小为 θ,求sin θ的值.
设,解不等式 2 | x + 1 | + | x | ≤ 4 .
在极坐标系中,已知点 A ( ρ 1 , π 3 ) 在直线 l : ρ cos θ = 2 上,点 B ( ρ 2 , π 6 ) 在圆 C : ρ = 4 sin θ 上(其中 ρ ≥ 0 , 0 ≤ θ < 2 π ).
(1)求 ρ 1 , ρ 2 的值
(2)求出直线 l 与圆 C 的公共点的极坐标.
平面上点 A ( 2 , - 1 ) 在矩阵 M = a 1 - 1 b 对应的变换作用下得到点 B ( 3 , - 4 ) .
(1)求实数 a , b 的值;
(2)求矩阵 M 的逆矩阵 M - 1 .
已知数列 a n ( n ∈ N * ) 的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有 S n + 1 1 k - S n 1 k = λ a n + 1 1 k 成立,则称此数列为“λ–k”数列.
(1)若等差数列 a n 是“λ–1”数列,求λ的值;
(2)若数列 a n 是“ 3 3 - 2 ”数列,且an>0,求数列 a n 的通项公式;
(3)对于给定的λ,是否存在三个不同的数列 a n 为“λ–3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,