在三棱锥 A- BCD中,已知 CB= CD= 5 , BD=2, O为 BD的中点, AO⊥平面 BCD, AO=2, E为 AC的中点.
(1)求直线 AB与 DE所成角的余弦值;
(2)若点 F在 BC上,满足 BF= 1 4 BC,设二面角 F- DE- C的大小为 θ,求sin θ的值.
有两个人在一座11层大楼的底层进入电梯,设他们中的每一个人自第二层开始的每一层离开是等可能的,求两个人在不同层离开的概率.
有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,具体规则如下:
每个同学可选择参加两项游戏,请你选择,并说出道理.
向三个相邻的军火库投掷一颗炸弹,炸中第一个军火库的概率为0.025,炸中其余两个军火库的概率都为0.1,只要炸中一个,另外两个也要爆炸,求军火库爆炸的概率.
(1)如图3-3,某人投标投中圆的概率是多少(投在正方形外面或边缘不算)?(2)同(1)中图形,利用随机模拟的方法近似计算正方形内切圆的面积,并估计π的近似值.图3-3
在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形。试求这正方形的面积介于36与81之间的概率。