在三棱锥 A- BCD中,已知 CB= CD= 5 , BD=2, O为 BD的中点, AO⊥平面 BCD, AO=2, E为 AC的中点.
(1)求直线 AB与 DE所成角的余弦值;
(2)若点 F在 BC上,满足 BF= 1 4 BC,设二面角 F- DE- C的大小为 θ,求sin θ的值.
已知函数, (1)若是常数,问当满足什么条件时,函数有最大值,并求出取最大值时的值; (2)是否存在实数对同时满足条件:(甲)取最大值时的值与取最小值的值相同,(乙)? (3)把满足条件(甲)的实数对的集合记作A,设,求使的的取值范围.
上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元. (1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围; (2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
在中,已知. (1)求证:; (2)若求角A的大小.
如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3. (1)求证:BB1∥平面EFM; (2)求四面体的体积.
已知函数,f '(x)为f(x)的导函数,若f '(x)是偶函数且f '(1)=0. ⑴求函数的解析式; ⑵若对于区间上任意两个自变量的值,都有,求实数的最小值; ⑶若过点,可作曲线的三条切线,求实数的取值范围.