已知数列 a n ( n ∈ N * ) 的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有 S n + 1 1 k - S n 1 k = λ a n + 1 1 k 成立,则称此数列为“λ–k”数列.
(1)若等差数列 a n 是“λ–1”数列,求λ的值;
(2)若数列 a n 是“ 3 3 - 2 ”数列,且an>0,求数列 a n 的通项公式;
(3)对于给定的λ,是否存在三个不同的数列 a n 为“λ–3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,
(本小题满分12分) 已知在等比数列中,,且是和的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求的前项和.
(本小题满分10分) 已知椭圆的中心在坐标原点,右焦点为,、分别是椭圆的左右顶点,是 椭圆上的动点. (Ⅰ)若面积的最大值为,求椭圆的方程; (Ⅱ)过右焦点做长轴的垂线,交椭圆于、两点,若,求椭圆的 离心率.
(本小题满分12分) 过椭圆的右焦点作斜率的直线交椭圆于,两点,且与共线. (Ⅰ)求椭圆的离心率; (Ⅱ)设为椭圆上任意一点,且. 证明:为定值.
(本小题满分12分) 已知函数. (Ⅰ)当时,求关于的不等式解集; (Ⅱ)当时,若恒成立,求实数的最大值.
(本小题满分12分) 已知等差数列{}的公差,它的前项和为,若,且成等比数列. (Ⅰ)求数列{}的通项公式; (Ⅱ)若数列{}的前项和为,求证:.