甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。请你根据提供的信息说明:(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
如图,在四棱锥中,底面是正方形,侧棱,为中点,作交于 (1)求PF:FB的值 (2)求平面与平面所成的锐二面角的正弦值。
若矩阵属于特征值6的特征向量为,并且点在矩阵的变换下得到点,求矩阵。
已知的展开式中第三项的系数比第二项的系数大162 求(1)的值;(2)的一次项系数
(本小题满分16分) 已知函数 (1)若函数在处的切线方程为,求的值; (2)任取,且,恒有,求的取值范围; (3)讨论方程的解的个数,并说明理由。
(本小题满分16分) 已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数. 设f (x)=x2+ax,g(x)=x+b(R),=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数. (1)设,若h (x)为偶函数,求; (2)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;