已知数列中,函数.(1)若正项数列满足,试求出,,,由此归纳出通项,并加以证明;(2)若正项数列满足(n∈N*),数列的前项和为Tn,且,求证:.
(本小题满分14分)已知函数F(x)=|2x-t|-x3+x+1(x∈R,t为常数,t∈R).(Ⅰ)写出此函数F(x)在R上的单调区间;(Ⅱ)若方程F(x)-k=0恰有两解,求实数k的值.
(本小题满分14分)已知函数(为常数,且),且数列是首项为4,公差为2的等差数列. (Ⅰ)求证:数列是等比数列;(Ⅱ)若,当时,求数列的前项和;(III)若,且>1,比较与的大小.
(本小题满分14分)如图所示,在棱长为2的正方体中,、分别为、的中点.(Ⅰ)求证:平面;(Ⅱ)求证:;(III)求三棱锥的体积.
(本小题满分13分)已知椭圆的左焦点为,左右顶点分别为,上顶点为,过三点作圆,其中圆心的坐标为.(Ⅰ)当时,椭圆的离心率的取值范围.(Ⅱ)直线能否和圆相切?证明你的结论.
(本小题满分12分)同时掷两个骰子,计算:(Ⅰ)一共有多少种不同的结果?(Ⅱ)其中向上的点数之和是5的结果有多少种?概率是多少?(III)向上的点数之和小于5的概率是多少?