(本小题满分13分)已知椭圆的左焦点为,左右顶点分别为,上顶点为,过三点作圆,其中圆心的坐标为.(Ⅰ)当时,椭圆的离心率的取值范围.(Ⅱ)直线能否和圆相切?证明你的结论.
已知复数z=+(m2-5m-6)i(m∈R),试求实数m分别取什么值时,z分别为:(1)实数;(2)虚数;(3)纯虚数.
【原创】设,其中.(1)若无极值,求的取值范围;(2)若当,恒成立,求的取值范围.
已知函数,其中(Ⅰ)求在上的单调区间;(Ⅱ)求在(为自然对数的底数)上的最大值;(Ⅲ)对任意给定的正实数,曲线上是否存在两点、,使得是以原点为直角顶点的直角三角形,且此三角形斜边中点在轴上?
已知,命题:对任意,不等式恒成立;命题:存在,使得成立(Ⅰ)若为真命题,求的取值范围;(Ⅱ)当,若且为假,或为真,求的取值范围。(Ⅲ)若且是的充分不必要条件,求的取值范围。
已知,求证:关于的三个方程,,中至少有一个方程有实数根.