(本小题12分)已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点. (1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
(本小题共16分)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为. (1)①若圆过椭圆的两个焦点,求椭圆的离心率; ②若椭圆上存在点,使得,求椭圆离心率的取值范围;(2)设直线与轴、轴分别交于点,,求证:为定值.
((本小题满分14分)如图:设工地有一个吊臂长的吊车,吊车底座高,现准备把一个底半径为高的圆柱形工件吊起平放到高的桥墩上,问能否将工件吊到桥墩上?(参考数据:)
(本小题满分14分)如图,为圆的直径,点、在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)求证:平面;(2)设的中点为,求证:平面;(3)设平面将几何体分成的两个锥体的体积分别为,,求
(本小题满分14分)在△ABC中,分别为角A、B、C的对边,,="3," △ABC的面积为6 ⑴求角A的正弦值; ⑵求边b、c;
(本小题满分12分)如图,椭圆的顶点为焦点为S□ = 2S□(1)求椭圆C的方程;(2)设n 为过原点的直线,是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线使成立?若存在,求出直线的方程;若不存在,请说明理由。