已知椭圆C:+=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为.(1)求椭圆C的方程;(2)过原点且斜率为的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N 的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点. (Ⅰ)求椭圆的标准方程; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围; (Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
(本小题满分13分)已知函数. (Ⅰ)求函数的极大值; (Ⅱ)设定义在上的函数的最大值为,最小值为,且,求实数的取值范围.
(本小题满分12分)已知数列的前项和为,,,. (Ⅰ)求证:数列是等比数列; (Ⅱ)设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.
(本小题满分12分)如图,平面平面,其中为矩形,为梯形,,,,为中点. (Ⅰ)求证:平面; (Ⅱ)求证:.
(本小题满分12分)在中,内角的对边分别为且,已知,,. (Ⅰ)求和的值; (Ⅱ)求的值.