(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相同数字的概率;(Ⅱ)求取出的两个球上标号之积能被3整除的概率.
已知复数,,且.(1)若且,求的值;(2)设=,已知当时,,试求的值.
已知的图象经过点,且在处的切线方程是(1) 求的解析式;(2) 点是直线上的动点,自点作函数的图象的两条切线、(点、为切点),求证直线经过一个定点,并求出定点的坐标。
已知函数。 (1)求的单调区间;(2)如果在区间上的最小值为,求实数以及在该区间上的最大值.
已知两定点,动点满足。(1) 求动点的轨迹方程;(2) 设点的轨迹为曲线,试求出双曲线的渐近线与曲线的交点坐标。
在△ABC中,已知角A、B、C所对的边分别是a、b、c,边c=,且tanA+tanB=tanA·tanB-,又△ABC的面积为S△ABC=,求a+b的值。