A是锐角,求的值;
((本小题满分12分)数列各项均为正数,其前项和为,且满足.(Ⅰ)求证数列为等差数列,并求数列的通项公式;(Ⅱ)设, 求数列的前n项和,并求使 对所有的都成立的最大正整数m的值.
((本小题满分12分)如图,在四棱锥中,侧棱底面,底面为矩形,,为的上一点,且,为PC的中点.(Ⅰ)求证:平面AEC;(Ⅱ)求二面角的余弦值.
(本小题满分12分)在某海岸A处,发现北偏东方向,距离A处n mile的B处有一艘走私船在A处北偏西的方向,距离A处n mile的C处的缉私船奉命以n mile/h的速度追截走私船. 此时,走私船正以5 n mile/h的速度从B处按照北偏东方向逃窜,问缉私船至少经过多长时间可以追上走私船,并指出缉私船航行方向.
.(本小题满分10分)记不等式组表示的平面区域为M.(Ⅰ)画出平面区域M,并求平面区域M的面积;(Ⅱ)若点为平面区域M中任意一点,求直线的图象经过一、二、四象限的概率.
(本小题满分12分)如题21图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。(1)求面积的最大值;(2)证明:直线MA、MB与x轴围成一个等腰三角形。