(本小题12分)如图,正方体ABCD-A1B1C1D1的棱长为2.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求三棱锥C-BDB1的体积。
已知点和,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线交于D、E两点,求线段DE的长.
已知椭圆与直线相交于两点.(1)当椭圆的半焦距,且成等差数列时,求椭圆的方程;(2)在(1)的条件下,求弦的长度;
已知点A、B的坐标分别是,.直线相交于点M,且它们的斜率之积为-2.(Ⅰ)求动点M的轨迹方程;(Ⅱ)若过点的直线交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线的方程.
已知直线被抛物线截得的弦长为20,为坐标原点.(1)求实数的值;(2)问点位于抛物线弧上何处时,△面积最大?
已知将圆上的每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C;设,平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.(1)求曲线的方程;(2)求m的取值范围.