已知将圆上的每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C;设,平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.(1)求曲线的方程;(2)求m的取值范围.
求圆心在直线上,并且经过,与直线相切的圆的方程.
已知圆通过不同的三点,,和,且该圆在点处的切线的斜率等于1,求圆的方程.
已知圆的圆心在轴上,截直线所得的弦长为,且与直线相切,求圆方程.
求由曲线围成的图形的面积.
如图,以正方体的三条棱所在直线为坐标轴,建立空间直角坐标系.点在正方体的对角线上,点在正方体的棱上. (1)当点为对角线的中点,点在棱上运动时,探究的最小值; (2)当点为棱的中点,点在对角线上运动时,探究的最小值; (3)当点在对角线上运动,点在棱上运动时,探究的最小值. 由以上问题,你得到了什么结论?你能证明你的结论吗?