已知点和,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线交于D、E两点,求线段DE的长.
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA⊥底面ABCD,PA=4,M为PA的中点,N为AB的中点.(1)求三棱锥P-CDM的体积;(2)求二面角A-DN-M的余弦值.
(本小题满分12分)已知向量,,函数且满足.(1)求函数y=f(x)的解析式,并求它的最小正周期;(2)在中,若,且,,求角B的大小.
(本小题满分14分)已知数列、满足a1=1,a2=2,bn+1=3bn,bn=an+1-an.(1)求数列的通项公式;(2)若数列满足,求数列的前n项和Sn.
(本小题满分14分)已知函数.(1)若函数f(x)在上为增函数,求实数a的取值范围;(2)当a=1时,求f(x)在上的最大值和最小值;(注)(3)当a=1时,求证:对大于1的任意正整数n,均有.
(本小题满分14分)已知椭圆C的长轴长与短轴长之比为,焦点坐标分别为F1(-2,0),F2(2,0),O是坐标原点.(1)求椭圆C的标准方程;(2)已知A(-3,0),B(3,0)P是椭圆C上异于A、B的任意一点,直线AP、BP分别交于y轴于M、N两点,求的值;(3)在(2)的条件下,若G(s,o)、H(k,o)且,(s<k),分别以线段OG、OH为边作两个正方形,求这两上正方形的面积和的最小值,并求出取得最小值时G、H两点的坐标.