某工厂去年新开发的某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元的科技成本,并计划以后每年比上一年多投入100万元,预计产量每年递增10万只,投入n次后,每只产品的固定成本为g(n)=(k为常数,n∈Z且n≥0).若产品销售价保持不变,第n次投入后的年纯利润为f(n)万元(年纯利润=年收入-年固定成本-年科技成本).(1)求k的值,并求出f(n)的表达式;(2)问从今年起,第几年纯利润最高?最高纯利润为多少万元?
设,a为实数.(1)分别求;(2)若,求a的取值范围.
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.(1)求四棱锥F﹣ABCD的体积VF﹣ABCD;(2)求证:平面AFC⊥平面CBF;(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.
定义在上的函数满足条件:对所有正实数x,y成立,且,当时,有成立.(Ⅰ)求和的值;(Ⅱ)证明:函数在上为单调递增函数.
如图,已知矩形所在平面外一点,平面,分别是的中点,.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.
设函数f(x)=mx2-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],恒成立,求m的取值范围.