水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?
如图,抛物线与x轴相交于B,C两点,与y轴相交于点A,P(2a,-4a2+7a+2)(a是实数)在抛物线上,直线y=k x +b经过A,B两点.(1)求直线AB的解析式;(2)平行于y轴的直线x=2交直线AB于点D,交抛物线于点E.①直线x=t(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FG∶DE=3∶4,求t的值;②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.
如图,矩形ABCD中,AB="10" cm,BC="6" cm.现有两个动点P,Q分别从A,B同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1 cm/s,运动时间为t s.(1)设点Q的运动速度为 cm/s.①当△DPQ的面积最小时,求t的值;②当△DAP∽△QBP相似时,求t的值.(2)设点Q的运动速度为a cm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.
一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为 km/h,快车的速度为 km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.
如图,在菱形ABCD中,E为边BC的中点,DE与对角线AC交于点M,过点M作MF⊥CD于点F,∠1=∠2.求证:(1)DE⊥BC;(2)AM=DE+MF.
如图,AB是⊙O的直径,过⊙O上的点C作切线交AB的延长线于点D,∠D=30º. (1)求∠A的度数; (2)过点C作CF⊥AB于点E,交⊙O于点F,CF=4,求的长度(结果保留π).