如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)如图2,连接DF、CE,探究线段DF与CE的关系并证明;(3)图1中,若AB=4,BG=3,求EF长.
如图2,的顶点坐标分别为.(1) 画出将绕点顺时针旋转的图形△A′B′C;(2) 点A′ 的坐标为 ;(3) 求B点转过的路径长.
计算: -
如图10,C是线段AB上的一点,△ACD和△BCE都是等边三角形.(1)求证:AE=BD;(2)若AE交CD于M,BD交CE于N,连结MN,试判断△MCN的形状,并说明理由.
甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为(时),、分别与之间的部分函数图象如图9所示.(1)当0≤x≤6时,分别求、与之间的函数关系式;(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过棵.
如图8,在△ABC中,D,E在直线BC上.(1)若AB=BC=AC=CE=BD,求∠EAC的度数;(2)若AB=AC=CE=BD,∠DAE=100°,求∠EAC的度数.