如图1,已知一次函数y=-x+6分别与x、y轴交于A、B两点,过点B的直线BC交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B. (1)求证:MA=MB; (2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.
(1)求出这10名女生成绩的中位数、众数和极差; (2)按规定,男生1000米跑成绩不超过3′35〞就可以得满分.该校学生有490人,男生比女生少70人. 请你根据上面抽样的结果,估算该校考生中有多少名男生该项考试得满分?
如图,在平面直角坐标系中,等边中,BC∥轴,且BC=,顶点A在抛物线上运动. (1)当顶点A运动至与原点重合时,顶点C是否在该抛物线上? (2)在运动过程中有可能被轴分成两部分,当上下两部分的面积之比为1:8(即)时,求顶点A的坐标; (3)在运动过程中,当顶点B落在坐标轴上时,直接写出顶点C的坐标.
如图1,△ABC内接于半径为4cm的⊙O,AB为直径,长为. (1)计算∠ABC的度数; (2)将与△ABC全等的△FED如图2摆放,使两个三角形的对应边DF与AC有一部分重叠,△FED的最长边EF恰好经过的中点M.求证:AF=AB; (3)设图2中以A、C、M为顶点的三角形面积为S,求出S的值.
如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=DC,点E在对角线BD上,作∠ECF=90°,连接DF,且满足CF=EC. (1)求证:BD⊥DF; (2)当时,试判断四边形DECF的形状,并说明理由.