某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克.(Ⅰ)求的值;(Ⅱ)若该商品的成本为元/千克,试确定销售价格的值,使该商场每日销售该商品所获得的利润最大.
设△的内角所对边的长分别为,且有。 (1)求角的大小; (2) 若,,为的中点,求的长。
已知为锐角,,,求的值.
(1)为等差数列的前项和,,,求. (2)在等比数列中,若求首项和公比.
已知数列满足:,数列满足. (1)若是等差数列,且求的值及的通项公式; (2)若是公比为的等比数列,问是否存在正实数,使得数列为等比数列?若存在,求出的值;若不存在,请说明理由; (3)若是等比数列,求的前项和(用n,表示).
已知二次函数 (1)若,求实数b,c的值; (2)若求实数的取值范围.