(本小题满分13分)三棱锥P-DEF中, 顶点P在平面DEF上的射影为O.(Ⅰ)如果PE=PF=PD, 证明O是三角形DEF的外心(外接圆的圆心)(Ⅱ)如果, , , ,证明: O是三角形DEF的垂心(三条高的交点)
某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场. (1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率; (2)设为加工工序中产品合格的次数,求的分布列和数学期望.
如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题: (1)求两点间的距离; (2)证明:平面; (3)求直线与平面所成角的正弦值.
已知向量(为常数且),函数在上的最大值为. (1)求实数的值; (2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求取最大值时的单调增区间.
等比数列中,已知. (1)求数列的通项公式; (2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.
已知函数, (1)求函数的单调区间; (2)在区间内存在,使不等式成立,求的取值范围.