为了调查胃病是否与生活规律有关,在某地对名岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共人.(1)根据以上数据列出列联表.(2)并判断岁以上的人患胃病与否和生活规律是否有关。
如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,AE=AB,BD,CE相交于点F.(Ⅰ)求证:A,E,F,D四点共圆;(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
设,.(Ⅰ)当时,求曲线在处的切线的方程;(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;(Ⅲ)如果对任意的,都有成立,求实数的取值范围.
如图,已知抛物线:和⊙:,过抛物线上一点作两条直线与⊙相切于、两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)当的角平分线垂直轴时,求直线的斜率;(Ⅲ)若直线在轴上的截距为,求的最小值.
正方形ADEF与梯形ABCD所在平面互相垂直,,,,点M在线段EC上且不与E,C重合.(Ⅰ)当点M是EC中点时,求证:平面ADEF;(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M BDE的体积.
已知数列{an}满足:, , (Ⅰ)求,并求数列{an}通项公式;(Ⅱ)记数列{an}前2n项和为,当取最大值时,求的值.