某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.
如图,在⊙O中,,点D、E分别在半径OA和OB上,AD=BE.求证:CD=CE.
已知:写成的形式,求出图像与轴的交点,直接写出原抛物线与轴翻折后图像的解析式为____________________________.
解方程:
对称轴为直线的抛物线y=x2 + bx + c, 与轴相交于A 、B,两点,其中点A的坐标为(3,0). (1)求点的坐标. (2)点是抛物线与轴的交点,点是线段上的动点,作轴交抛物线于点,求线段长度的最大值.
某工厂的大门是一抛物线形水泥建筑物,如图2210,大门地面宽AB=4米,顶部C离地面的高度为4.4米,现在一辆装满货物的汽车欲通过大门,货物顶部离地面的高度为2.8米,装货宽度为2.4米,请通过计算,判断这辆汽车能否顺利通过大门?