(本小题满分14分)已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(Ⅰ)求圆的方程;(Ⅱ)设直线与圆相交于两点,求实数的取值范围;(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
如图,△AOE和△BOE都是边长为1的等边三角形,延长OB到C使|BC|=t(t>0),连AC交BE于D点.⑴用t表示向量和的坐标;⑵求向量和的夹角的大小.
已知函数f(x)=-sin2x+sinx+a,(1)当f(x)=0有实数解时,求a的取值范围;(2)若x∈R,有1≤f(x)≤,求a的取值范围。
某飞机制造公司最多可产某种型号飞机100架/年,又制造X架该种飞机的产值函
在数列中,已知a1=2,an+1=4an-3n+1,n∈.设,求证:数列是等比数列;
某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;② 该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用表示床价,用表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)(1)把表示成的函数,并求出其定义域;(2)试确定该宾馆将床位定价为多少时既符合上面的两个条件,又能使净收入最多?