若二次函数,满足且=2.(Ⅰ)求函数的解析式;(Ⅱ)若存在,使不等式成立,求实数m的取值范围.
已知函数.(1)讨论函数的单调性;(2)设,证明:对任意,,.
过点的椭圆()的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.(1)当直线过椭圆右焦点时,求线段的长;(2)当点异于点时,求证:为定值.
如图(1),是等腰直角三角形,其中,,分别为,的中点,将沿折起,点的位置变为点,已知点在平面上的射影为的中点,如图(2)所示.(Ⅰ)求证:;(Ⅱ)求三棱锥的体积.
已知数列的前项和(),数列的前项和().(Ⅰ)求数列的前项和;(Ⅱ)求数列的前项和.
在中,角,,所对的边长分别为,,,向量,,且.(1)求角;(2)若,,成等差数列,且,求的面积.