如图,四边形ABCD是长方形.(1)作△ABC关于直线AC对称的图形;(2)试判断(1)中所作的图形与△ACD重叠部分的三角形形状,并说明理由.
一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别.从中任意摸出一个球.(1)求摸到绿球的概率;(2)再向口袋中放入几个绿球,才能使摸到绿球的概率为?
已知 求的值.
在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.(1)第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.(2)第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.(3)探究活动结束后,老师给大家留下了一道探究题:如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.
已知:在△ABC中,AB=AC,∠B=30°,BC=6,动点P以每秒个单位从点B出发沿线段BA、AC运动,过点P作边长为3的等边△FDE,使得点D在线段BC上,点E在线段DC上.(1)如图(1),当EF经过点A时,动点P运动时间t为多少?(2)设点P运动t秒时,△ABC与△DEF重叠部分面积为S,求S关于t的函数关系式.(3)如图(2),在点P的运动过程中,是否存在时间t,使得以点P为圆心,AP为半径的圆与△FDE三边所在的直线相切.如果存在,请直接写出t的值;如不存在,说明理由.
已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=.(1)求a的值.(2)点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标. (3)将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1,若存在,求出k的值;若不存在,请说明理由.