求与椭圆有公共焦点,且离心率的双曲线方程.
已知为坐标原点,,.(Ⅰ)若的定义域为,求的单调递增区间;(Ⅱ)若的定义域为,值域为,求的值.
设,两个函数,的图像关于直线对称.(1)求实数满足的关系式;(2)当取何值时,函数有且只有一个零点;(3)当时,在上解不等式.
如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.(1)求点的轨迹曲线的方程;(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
已知函数,设曲线在点处的切线与轴的交点为,其中为正实数.(1)用表示;(2),若,试证明数列为等比数列,并求数列的通项公式;(3)若数列的前项和,记数列的前项和,求.
某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.