(本小题共14分)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
设函数,记的导函数,的导函数,的导函数,…,的导函数,. (1)求; (2)用n表示; (3)设,是否存在使最大?证明你的结论.
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减 少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中 逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不低于时,才能对污 染产生有效的抑制作用. (1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长? (2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单 位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值. (此时水中碱浓度为两次投放的浓度的累加)
在平面直角坐标系内,动圆过定点,且与定直线相切. (1)求动圆圆心的轨迹的方程; (2)中心在的椭圆的一个焦点为,直线过点.若坐标原点关于直线的对称点在曲线上,且直线与椭圆有公共点,求椭圆的长轴长取得最小值时的椭圆方程.
如图甲,设正方形的边长为,点分别在上,并且满足,如图乙,将直角梯形沿折到的位置,使点在 平面上的射影恰好在上. (1)证明:平面; (2)求平面与平面所成二面角的余弦值.
市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情 况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机 的.同一条道路去程与回程是否堵车相互独立. 假设李生早上需要先开车送小孩去丙地小学, 再返回经甲地赶去乙地上班.假设道路、、上下班时间往返出现拥堵的概率都是, 道路、上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到. (1)求李生小孩按时到校的概率; (2)李生是否有八成把握能够按时上班? (3)设表示李生下班时从单位乙到达小学丙遇到拥堵的次数,求的均值.