(本小题满分13分)已知函数.(1)若实数,求函数在上的极值;(2)记函数,设函数的图象C与轴交于点,曲线C在点处的切线与两坐标轴所围成的图形的面积为,求当时的最小值。
已知函数.(1)求函数的对称轴方程和单调递增区间;(2)若中,分别是角的对边,且,,求的面积.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(Ⅰ)求的极值;(Ⅱ)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知数列的前项和为,且对任意的都有 ,(Ⅰ)求数列的前三项;(Ⅱ)猜想数列的通项公式,并用数学归纳法证明
将边长为米的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少米?方盒的最大容积为多少?
已知a、b、c成等差数列且公差,求证:、、不可能成等差数列