已知其中(1)求的单调区间;(2)设,函数在区间上的最大值为,最小值为,求的取值范围.
(本小题满分14分)已知椭圆上的点到左右两焦点的距离之和为,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线交椭圆于两点.(1)若轴上一点满足,求直线斜率的值;(2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
已知数列的前项和,满足为常数,且,且是与的等差中项.(Ⅰ)求的通项公式;(Ⅱ)设,求数列的前项和.
(本小题满分12分)已知命题:在上定义运算:不等式对任意实数恒成立;命题:若不等式对任意的恒成立.若为假命题,为真命题,求实数的取值范围.
(本小题满分12分)已知椭圆与双曲线的焦点相同,且它们的离心率之和等于.(Ⅰ)求椭圆方程;(Ⅱ)过椭圆内一点作一条弦,使该弦被点平分,求弦所在直线方程.
(本小题满分12分)在中,角的对边分别为,已知.(Ⅰ)求角的大小;(Ⅱ)若,求△的面积.