2015年某市某区高考文科数学成绩抽样统计如下表:(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)(2)若2015年某市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;(3)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.
已知函数.(Ⅰ)求函数的最小正周期、最大值及取最大值时自变量的取值集合;(Ⅱ)在中,角,,的对边分别是,,;若,,成等比数列,且,求的值.
已知函数().(Ⅰ)若函数在定义域内单调递增,求实数的取值范围;(Ⅱ)若,且关于的方程在上恰有两个不等的实根,求实数的取值范围;(Ⅲ)设各项为正数的数列满足,(),求证:.
已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.(Ⅰ)求数列,的通项公式;(Ⅱ)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
已知椭圆上的点到左右两焦点的距离之和为 ,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线交椭圆于两点.(ⅰ)若轴上一点满足,求直线斜率的值;(ⅱ)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
设在上的最大值为3(Ⅰ)求的单调递增区间;(Ⅱ)在中,内角的对边分别为,且,,求及的面积.