2015年某市某区高考文科数学成绩抽样统计如下表:(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)(2)若2015年某市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;(3)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.
已知 cos ( x - π 4 ) = 2 10 , x ∈ ( π 2 , 3 π 4 ) . (1)求 sin x 的值; (2)求 cos ( 2 x - π 3 ) 的值.
已知函数 f ( x ) = A sin ( 3 x + φ ) ( A > 0 , x ∈ ( - ∞ , + ∞ ) , 0 < φ < π ) 在x= x = π 12 时取得最大值4.. (1)求 f ( x ) 的最小正周期; (2)求 f ( x ) 的解析式; (3)若 f ( 2 3 α + π 12 ) = 12 5 .求 tan 2 α 的值.
如图,在△OAB中,已知P为线段AB上的一点,且||=2||. (Ⅰ)试用,表示; (Ⅱ)若=3,=2,且∠AOB=60°,求•的值.
已知 sin α = 5 5 ,且 α 是第一象限. (1)求 tan ( π + α ) + sin π 2 - α cos π - α 的值; (2)求 tan ( α + π 4 ) 的值.
已知函数f(x)=sinx+cosx. (1)若f(x)=2f(﹣x),求的值; (2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.