某单位建造一间地面面积为12的背面靠墙的矩形小屋,房屋正面的造价为1200元/,房屋侧面造价为800元/,屋顶的总造价为5800元,如果墙面高为3m,且不计房屋背面费用,问怎样设计房屋能使得总造价最低,最低造价为多少元?
(本小题满分12分)已知函数.(Ⅰ)求的最小正周期和最大值;(Ⅱ)求的单调增区间;(Ⅲ)求在上的最小值.
选修4-5:不等式选讲:已知不等式(1)若,求不等式的解集;(2)若已知不等式的解集不是空集,求的取值范围。
选修4-4:坐标系与参数方程:已知曲线(为参数).(1)将的方程化为普通方程;(2)若点是曲线上的动点,求的取值范围.
选修4-1:几何证明选讲:如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.
设函数(),.(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;(3)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.