在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.
设二次函数,已知不论为何实数,恒有和。(1)求证:b+c=-2(2)求证:(3)若函数的最大值为8,求b、c的值。
已知函数(Ⅰ)判断的奇偶性.(Ⅱ)判断在内单调性并用定义证明;(Ⅲ)求在区间上的最小值.
给出集合A={-2,-1,,,,1,2,3}。已知a∈A,使得幂函数为奇函数,指数函数在区间(0,+∞)上为增函数。(1)试写出所有符合条件的a,说明理由;(2)判断f(x)在(0,+∞)的单调性,并证明;(3)解方程:f[g(x)]=g[f(x)]。
已知 的最大值为1,最小值为,求实数与的值。
已知图象的一部分如图所示:(1)求的解析式;(2)写出的单调区间.