给出集合A={-2,-1,,,,1,2,3}。已知a∈A,使得幂函数为奇函数,指数函数在区间(0,+∞)上为增函数。(1)试写出所有符合条件的a,说明理由;(2)判断f(x)在(0,+∞)的单调性,并证明;(3)解方程:f[g(x)]=g[f(x)]。
在处可导,则
已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
设双曲线C:相交于两个不同的点A、B.求双曲线C的离心率e的取值范围:
已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求∠ 的取值范围;
已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;(2)求动弦AB的中点P的轨迹方程.