一个袋中装有四个形状大小完全相同的球,球的编号分别为 1 , 2 , 3 , 4 , (Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于 4 的概率; (Ⅱ)先从袋中随机取一个球,该球的编号为 m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为 n ,求 n < m + 2 的概率。
(12分)已知的展开式中前三项的系数成等差数列. (1)求n的值;(2)求展开式中系数最大的项.
设为三角形的三边,求证:
已知向量 =(cos,sin),=(cos,sin),||=. (Ⅰ)求cos(-)的值; (Ⅱ)若<<,-<<,且sin=-,求sin的值.
已知,, 且. (1)求函数的解析式; (2)当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分; (Ⅲ)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.