(12分)若函数.(1)求函数f(x)的单调递增区间。(2)求在区间[-3,4]上的值域
(本小题满分12分)已知函数, (Ⅰ)试用含的式子表示b,并求函数的单调区间;(Ⅱ)已知为函数图象上不同两点,为 的中点,记AB两点连线斜率为K,证明:
已知椭圆的离心率,短轴长为.(Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率为的直线与椭圆交于不同的两点、.是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.
(本小题满分12分)已知等差数列为递增数列,且是方程的两根,数列的前项和;(1)求数列和的通项公式;(2)若,为数列的前n项和,证明:
已知二次函数为偶函数,函数的图象与直线相切.(1)求的解析式;(2)若函数上是单调减函数,那么:①求的取值范围;②是否存在区间,使得在区间上的值域恰好为?若存在,请求出区间[m,n];若不存在,请说明理由.
若定义在R上的函数对任意的,都有成立,且当时,。(1)求证:为奇函数;(2)求证:是R上的增函数;(3)若,解不等式.