已知:椭圆C的中心在原点,焦点在轴上,焦距为8,且经过点(0,3)(1)求此椭圆的方程若已知直线,问:椭圆C上是否存在一点,使它到直线的距离最小?最小距离是多少?
(本小题共14分)已知椭圆:的右焦点为,上下两个顶点与点恰好是正三角形的三个顶点. (Ⅰ)求椭圆C的标准方程; (Ⅱ)过原点O的直线与椭圆交于,两点,如果△为直角三角形,求直线的方程.
(本小题共13分)已知函数. (Ⅰ)求的单调区间; (Ⅱ)证明:,,; (Ⅲ)写出集合(b为常数且)中元素的个数(只需写出结论).
(本小题共14分)如图所示,四棱锥的底面是直角梯形,,,,底面,过的平面交于,交于(与不重合). (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ)如果,求此时的值.
(本小题共13分)长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字). (Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长; (Ⅱ)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.
(本小题共13分)已知等差数列的前项和为,等比数列满足,,. (Ⅰ)求数列,的通项公式; (Ⅱ)如果数列为递增数列,求数列的前项和.