已知函数.(1)求的单调区间和极值点;(2)求使恒成立的实数的取值范围;(3)当时,是否存在实数,使得方程有三个不等实根?若存在,求出的取值范围;若不存在,请说明理由.
设函数(1)若是函数的极值点,和是函数的两个不同零点,且,求;(2)若对任意,都存在(为自然对数的底数),使得成立,求实数的取值范围.
设等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足().(1)求数列的通项公式;(2)试确定的值,使得数列为等差数列;(3)当为等差数列时,对每个正整数,在与之间插入个2,得到一个新数列. 设是数列 的前项和,试求满足的所有正整数.
如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为,,问点P在何处时,最小?
已知数列满足:数列满足。(1)若是等差数列,且求的值及的通项公式;
已知的周长为,且(1)求边的长;(2)若的面积为,求角.